
Model Independent Z' Sensitivities

Diener ea, 0910.1334

- Motivations
- Model independent analysis
- Couplings
- Present and future constraints and diagnostics
- References

- ullet Extensive physics implications, especially for TeV-scale Z'
 - Extended Higgs/neutralino sector (LHC cascades, dark matter)
 - Quasi-chiral exotics (anomalies; may be long-lived)
 - Sparticle/exotics factory
 - Possible tree-level FCNC (may compete with SM loops)
 - Origin of ν mass (Majorana, Dirac, or ordinary-sterile mixing)
 - Can allow electroweak baryogenesis
 - Possible Z' mediation of SUSY breaking

Standard Model with Additional U(1)'

$$-L_{ ext{NC}} = \underbrace{eJ_{em}^{\mu}A_{\mu} + g_{1}J_{1}^{\mu}Z_{1\mu}^{0}}_{ ext{SM}} + \sum_{lpha=2}^{n+1}g_{lpha}J_{lpha}^{\mu}Z_{lpha\mu}^{0}$$
 $J_{lpha}^{\mu} = \sum_{i}ar{f}_{i}\gamma^{\mu}[\epsilon_{L}^{lpha}(i)P_{L} + \epsilon_{R}^{lpha}(i)P_{R}]f_{i}$

- ullet $\epsilon_{L,R}^{lpha}(i)$ are $U(1)_{lpha}$ charges of the left and right handed components of fermion f_i (chiral for $\epsilon_L^{lpha}(i)
 eq \epsilon_R^{lpha}(i)$)
- $ullet \ g_{V,A}^lpha(i) = \epsilon_L^lpha(i) \pm \epsilon_R^lpha(i)$
- ullet May specify left chiral charges for fermion f and antifermion f^c

$$\epsilon_L^lpha(f) = Q_{lpha f} \qquad \quad \epsilon_R^lpha(f) = -Q_{lpha f^c}$$

$$Q_{1u}=rac{1}{2}-rac{2}{3}\sin^2 heta_W$$
 and $Q_{1u^C}=+rac{2}{3}\sin^2 heta_W$

- $\begin{array}{l} \bullet \ \ \text{Family universal for} \ \epsilon_{L,R}^2(u) = \epsilon_{L,R}^2(c) = \epsilon_{L,R}^2(t) \\ \text{(and } (d,s,b), \ (e,\mu,\tau), \ (\nu_e,\nu_\mu,\nu_\tau)) \end{array}$
 - Otherwise, FCNC induced by fermion mixing

Motivations for a Z'

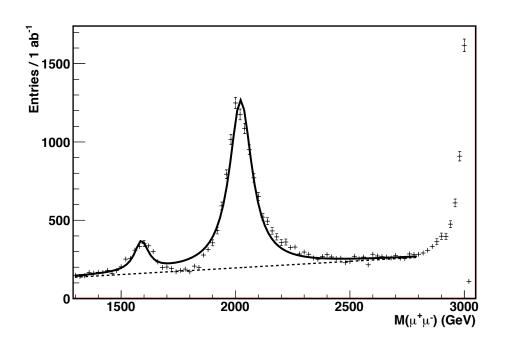
- Occur in most extensions of standard model, often at TeV scale
- Strings/GUTS (large underlying groups; U(n) in Type IIa)
 - Harder to break U(1)' factors than non-abelian (remnants)
 - Supersymmetry: $SU(2) \times U(1)$ and U(1)' breaking scales both set by SUSY breaking scale (unless flat direction)
 - Elegant solution to μ problem
- Alternative electroweak model/breaking (TeV scale): DSB, Little Higgs, extra dimensions (Kaluza-Klein excitations, $M \sim R^{-1} \sim 2 \; {\rm TeV} \times (10^{-17} {\rm cm}/R)$), left-right symmetry
- Connection to quasi-hidden sectors (dark; SUSY breaking)

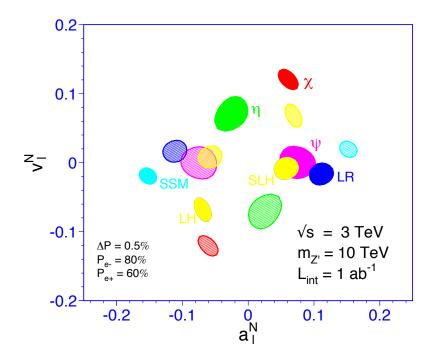
Model-Independent Analyses

- Extensive studies of precision electroweak (mass, mixing), Tevatron,
 LHC, ILC, possible FCNC
- Mostly for benchmark models (sequential Z'; E_6 ; $T_{3R}/B-L$; anomaly-free; DSB; family-nonuniversal; leptophobic; kinetic mixing; \cdots)
- Model-independent couplings (possibly family universal)
 - Important for probing class of model
 - Formalism/diagnostics developed in early 1990s (needs updating)
 - Many parameters, even for family universal: $Q_L, L_L, u_L^c, d_L^c, e_L^+$ charges (g') absorbed or by convention); $M_{Z'}, \Gamma_{Z'}, \theta$; exotic, Higgs, ν_R , family nonuniversal, etc

- Updated model-independent analysis of LHC/ILC sensitivities and diagnostic possibilities (with Tao Han, Zhen Liu)
- Comparison to flavor physics for family nonuniversal (with Cheng-Wei Chiang, Jusak Tandean)
- Focus on TeV-scale with \sim electroweak-strength couplings to q, ℓ
- Full analysis of two benchmarks (for ILC at 500 GeV and 1 TeV):
 - $M_{Z'}=3$ TeV (dielepton resonance at LHC with rapidity, A_{FB} , etc; ILC interference with $Z,\,\gamma$)
 - $-M_{Z^{\prime}}=6$ TeV (ILC interference only)
- Sensitivity? How much can one learn about parameters such as $\epsilon_R(e)/\epsilon_L(L)$, $\epsilon_R(u)/\epsilon_L(Q)$, $\epsilon_R(d)/\epsilon_L(Q)$ and new physics decay channels?

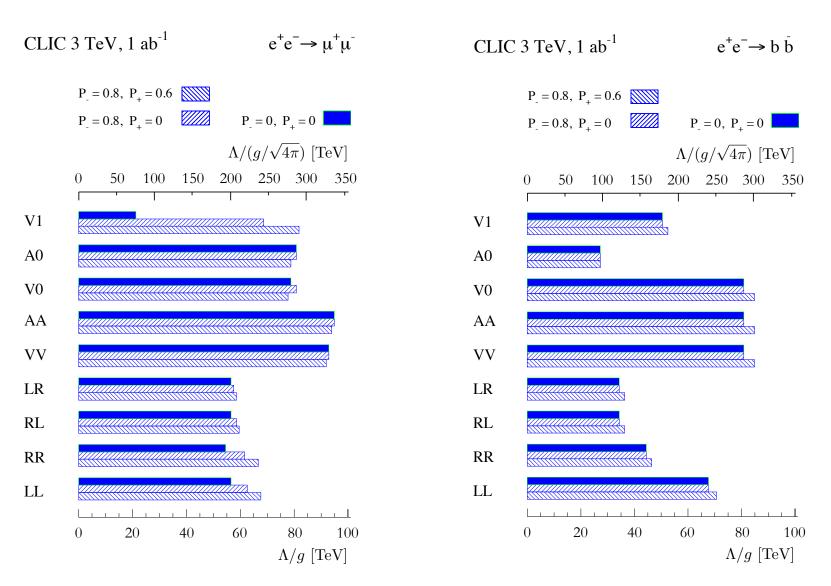
ILC/CLIC Sensitivies in Specific Models


		DISCOV	/ERY		
(P ⁻ ;P ⁺) ILC 0.5 TeV		-	1 TeV	• • •	•
R (P ⁻ ;0) ILC 0.5 TeV			1 TeV		
(0;0) ILC 0.5 TeV			1 TeV		
LHC					
$(P^-; P^+)$ ILC 0.5 TeV			1 TeV		
(P ⁻ ;0) ILC 0.5 TeV	(P ⁻ ;0) ILC 0.5 TeV		1 TeV		
(0;0) ILC 0.5 TeV			1 TeV		
LHC					
$(P^-; P^+)$ ILC 0.5 TeV		1 TeV			
S (P ⁻ ;0) ILC 0.5 TeV	(P ⁻ ;0) ILC 0.5 TeV				
(0;0) ILC 0.5 TeV		1 TeV			
LHC					
$(P^-; P^+)$ ILC 0.5 TeV		1 TeV			
(P ⁻ ;0) ILC 0.5 TeV		1 TeV			
(0;0) ILC 0.5 TeV		1 TeV			
LHC					
(P ⁻ ;P ⁺) ILC 0.5 TeV	1 TeV				
(P ⁻ ;0) ILC 0.5 TeV	1 TeV				
η (0;0) ILC 0.5 TeV	1 TeV	_			
LHC					
$(P^-; P^+)$ ILC 0.5 TeV	1 TeV				
(P ⁻ ;0) ILC 0.5 TeV	1 TeV				
(0;0) ILC 0.5 TeV	1 TeV	ı			
LHC					
0	5	· · ·	10	15	
v	Č			10	
		M_{Z} , (T	·eV)		


Osland ea, 0912.2806; 95%

Godfrey ea, 0511335

$$M_{Z^{\prime}} = 2(4)$$
 TeV; ILC at 500 GeV, 1000 fb $^{-1}$, $P_{e^-,e^+} = 80(60)\%$; 95%



CLIC, 1202.5940

References

- CLIC: Physics and Detectors at CLIC: CLIC Conceptual Design Report, L. Linssen et al., [1202.5940]
- ILC: ILC Physics DBD
- LHC: Z' Physics at the LHC, from P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202, 185 (2010) [1001.2693]
- LHC/ILC: Physics Interplay of the LHC and the ILC, G. Weiglein et al., Phys. Rept. 426, 47 (2006) [0410364]
- Theory: The Physics of Heavy Z' Gauge Bosons, PL, Rev. Mod. Phys. 81, 1199 (2009) [0801.1345]
- \bullet E_6 Models: J. Hewett and T. Rizzo, Phys. Rept. 183, 193 (1989)
- Model Independent formalism: [9303299], [9312329], [9501390]
- More extensive discussion in Duke talk Non-Standard Gauge Bosons

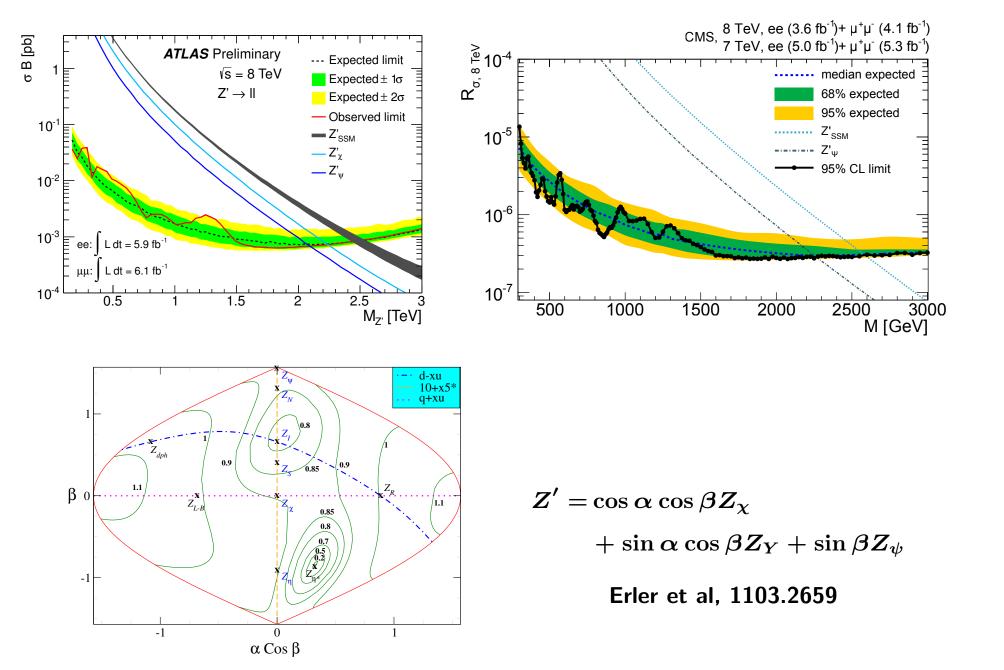
CLIC, 1202.5940 ($g \sim 0.46$ for comparison)

- $ullet \ [SU(2),U(1)']=0 \Rightarrow \epsilon_L^2(u_i)=\epsilon_L^2(d_i),\, \epsilon_L^2(e_i)=\epsilon_L^2(
 u_i)$
- ullet Can choose g_2 by convention (or absorb into couplings)
- \bullet $\;\Gamma_{Z_2}$ may be increased by decays into sparticles, exotics, invisible

Present and future constraints and diagnostics

- Precision electroweak (low energy WNC, Z-pole, LEP2, Tevatron, LHC)
 - Stringent limits on $Z-Z^\prime$ mixing; mass limits superseded by Tevatron, LHC
 - Future: JLab and other (Q_{weak} , Moller, SOLID); Giga-Z

The Tevatron and LHC

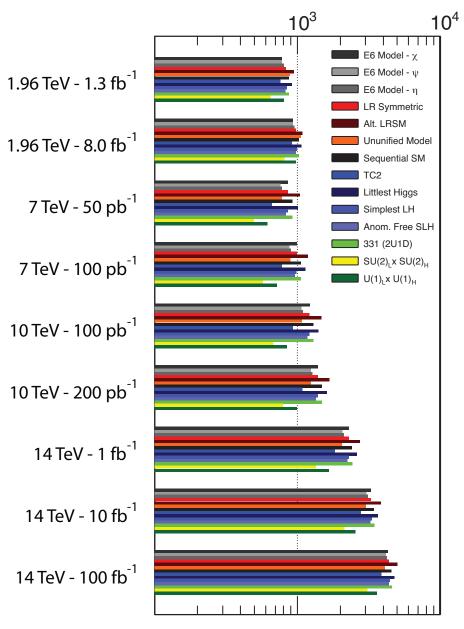

ullet Resonance in $pp, ar pp o e^+e^-, \mu^+\mu^-, \cdots \ AB o Z_lpha$ in narrow width:

$$rac{d\sigma}{dy} = rac{4\pi^2x_1x_2}{3M_lpha^3} \sum_i \left(f_{q_i}^A(x_1)f_{ar{q}_i}^B(x_2) + f_{ar{q}_i}^A(x_1)f_{q_i}^B(x_2)
ight) \Gamma(Z_lpha
ightarrow q_iar{q}_i)$$

$$\Gamma_{f_i}^lpha \equiv \Gamma(Z_lpha o f_i ar{f_i}) = rac{g_lpha^2 C_{f_i} M_lpha}{24\pi} \left(\epsilon_L^lpha(i)^2 + \epsilon_R^lpha(i)^2
ight)$$

$$x_{1,2} = (M_lpha/\sqrt{s})e^{\pm y}$$
 $C_{f_i} = ext{color factor}$

- ullet Also dijet, ar t t, etc: strongly coupled resonances
- Corrections for QCD/interference, etc (e.g., Petriello ea, 0801.4389; Erler ea, 1103.2659)



- ullet LHC discovery to $\sim 4-5$ TeV
 - Spin-0 (Higgs), spin-1 (Z'), spin-2 (Kaluza-Klein graviton) by angular distribution, e.g.,

$$rac{d\sigma_{Z'}^f}{d\cos heta^*} \propto rac{3}{8}(1+\cos^2 heta^*) + A_{FB}^f\cos heta^* \quad ext{[for spin-1]}$$

ullet Rates (total width) dependent on whether sparticle and exotic channels open ($\Gamma_{Z'}/M_{Z'}\sim 0.01
ightarrow 0.05$ for E_6) (Kang ea 0412190, Chang ea 1107.1133)

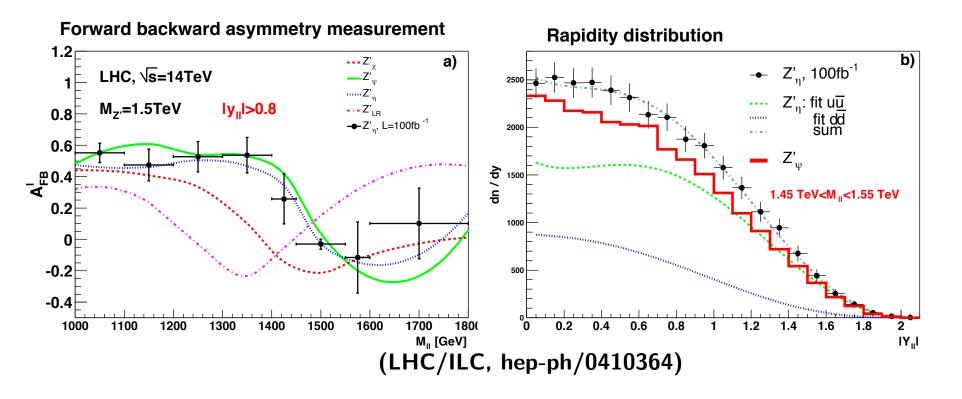
Discovery Reach (GeV)

Diener ea, 0910.1334; 5 events/dilepton channel $Snowmass\ Energy\ Frontier\ (BNL),\ April\ 5,\ 2013$

e^-e^+ Linear Colliders: ILC, CLIC

 $ullet e^-e^+ o far f \ (\gamma,Z,Z' \ ext{interference in} \ \sigma,A_{F,B},P_{e^-,e^+}$, mixed)

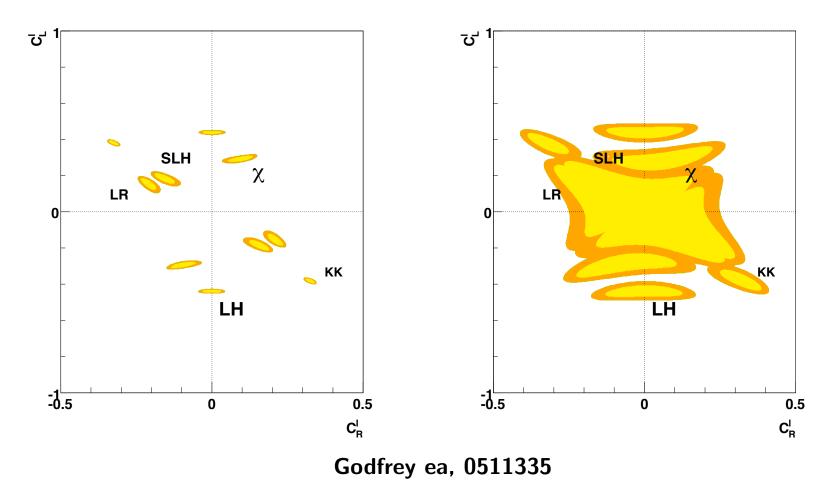
$$\epsilon_{L,R}^{lpha}(f)
ightarrow \epsilon_{L,R}^{lpha}(f) rac{M_{lpha}}{\sqrt{M_{lpha}^2 - s}}$$

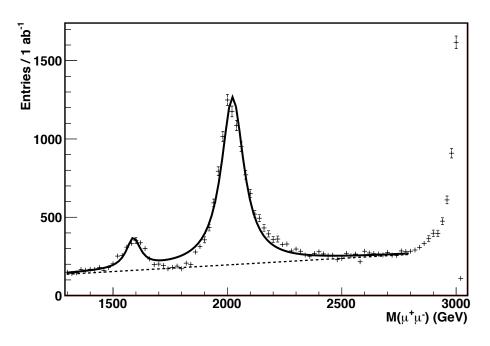

- Possible window for resonance at CLIC?
- Regimes
 - Discovery/mass at LHC (4-5 TeV)
 - Too heavy for LHC (sensitive to 7-10 \sqrt{s})
 - Also: Z-pole (Giga-Z)

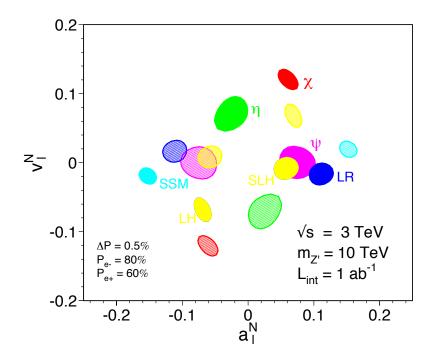
DISCOVERY $(P^-; P^+)$ ILC 0.5 TeV 1 TeV (P-;0) ILC 0.5 TeV 1 TeV ALR (0;0) ILC 0.5 TeV 1 TeV LHC $(P^-; P^+)$ ILC 0.5 TeV 1 TeV (P-;0) ILC 0.5 TeV 1 TeV SSM (0;0) ILC 0.5 TeV 1 TeV LHC $(P^-;P^+)$ ILC 0.5 TeV 1 TeV (P⁻;0) ILC 0.5 TeV 1 TeV LRS (0;0) ILC 0.5 TeV 1 TeV LHC $(P^-; P^+)$ ILC 0.5 TeV 1 TeV (P⁻;0) ILC 0.5 TeV 1 TeV (0;0) ILC 0.5 TeV 1 TeV LHC (P⁻;P⁺) ILC 0.5 TeV 1 TeV (P⁻;0) ILC 0.5 TeV 1 TeV (0;0) ILC 0.5 TeV 1 TeV LHC $(P^-; P^+)$ ILC 0.5 TeV 1 TeV (P⁻;0) ILC 0.5 TeV 1 TeV (0;0) ILC 0.5 TeV 1 TeV LHC 5 10 **15** M_{Z} , (TeV)

Osland ea, 0912.2806; 95%

Diagnostics of Z' Couplings


- LHC diagnostics to 2-2.5 TeV
- ullet Forward-backward asymmetries and rapidity distributions in $\ell^+\ell^-$


- ullet Other two body decays $(jj,ar{b}b,ar{t}t,e\mu, au^+ au^-)$
- Lineshape: $\sigma_{Z'}B_\ell$, $\Gamma_{Z'}$
- ullet au polarization
- Associated production $Z'Z, Z'W, Z'\gamma$
- ullet Rare (but enhanced) decays $Z' o W ar f_1 f_2$ (radiated W)
- ullet $Z' o W^+W^-, Zh,$ or $W^\pm H^\mp$: small mixing compensated by longitudinal W,Z


$$\Gamma(Z' o W^+W^-) = rac{g_1^2 heta^2 M_{Z'}}{192\pi} \left(rac{M_{Z'}}{M_Z}
ight)^4 = rac{g_2^2 C^2 M_{Z'}}{192\pi}$$

- Exotic decays: multileptons ($\ell\bar{\ell}\ell\bar{\ell}$ via RPV; 6ℓ via ZH'); $ggg,gg\gamma$ (loops); same-sign dileptons (heavy Majorana ν); invisible; sparticles/exotics (SUSY factory)
- Upgrade to hadronic polarization would be useful

M $_{Z^{\prime}}=2$ (4) TeV; ILC at 500 GeV, 1000 fb $^{-1}$, $P_{e^-,e^+}=80$ (60)%; 95%

CLIC, 1202.5940

- Benchmarks vs model independent studies of couplings (parametrization: Cvetic ea, 9501390, 9312329, 9303299)
- LHC/ILC (CLIC) diagnostics complementary
- Extensive references in
 - The Hunt for New Physics at the Large Hadron Collider, 1001.2693
 - The Physics of Heavy Z' Gauge Bosons, 0801.1345